
Post-Doctoral Position on the Implementation and the Analysis
of Network Protocols

Olivier Levillain

Context
In today’s connected world, we heavily rely on network protocols to communicate with one another.
To ensure the confidentiality and integrity of the exchanged data, we need to assess and improve the
security of these protocols and their implementation. This observation obviously applies to security
protocols, such as TLS and SSH, but it is also important to consider high-level, complex, application-
level protocols, such as HTTP/2 and lower-level protocols such as DNS or BGP.

Security flaws are indeed pervasive in network protocols, at the specification level or due to im-
plementation flaws: incomplete specification, memory corruption bugs, logical errors, state machine
shortcuts, cryptographic attacks, etc.

Following the work done in the GASP project1, this post-doc position aims at improving the existing
results from the project on TLS and SSH [5, 4] and extending them.

LEARNER
L*

MAPPER
(Test harness)

SUT

abstract(rsp)

concretize(m)m

rsp

Figure 1: Description of L⋆ Active Learning Approach

The methodology, shown in Figure 1 developed during the GASP project relies on the L⋆ algorithm,
an active learning approach allowing us to infer the state machine of a network protocol implementation.
Concretely, L⋆ requires a Learner, which actually runs the inference algorithm, and a Mapper, which
translates abstract messages generated by the Learner into concrete messages for the SUT and translates
the concrete reply from the SUT into abstract messages for L⋆. Figure 2 shows an example of the
vulnerabilities that can be automatically uncovered.

Here are some research questions we would like to explore.

Performance Improvement
The main bottleneck with active learning is the time spent waiting for timeouts to make sure the system
under test (SUT) is actually done sending data. We already designed heuristics to reduce the waiting
time in known situations (leading to a 25-fold performance gain).

To improve the performance further and make state machine inference more affordable, e.g. to
include it in continuous integration pipelines, we could use fine-grain monitoring or instrumenting the
SUT.

To this aim, the Learner (i.e. the component running the L⋆ algorithm) could monitor the syscalls
emitted by the SUT to detect when it can stop waiting. Beyond this simple idea, we anticipate inter-
esting challenges such as multi-threaded servers or hidden dependencies between processes such as a
SSH server executing a command2

1GASP, a Generic Approach to Secure network Protocols, is a project funded by the French ANR (ANR-19-CE39-0001).
2This specific case is actually problematic for our heuristics, since executing a command does not result in any direct

reply, but skipping the timeout wait might nevertheless lead to unexpected results (or even inference failure) since there
can be interactions between the executed command and the next message to send.

1

0

 - / ClientHello

F

 * / Alert

1

ServerHello / -

 * / Alert

2

EncryptedExtensions / -

 * / Alert

3

Certificate / -

 * / Alert

4

CertificateVerify / -

5

Finished
 / Finished+AppData

 * / Alert

Finished
 / Finished+AppData

AppData / EOF * / Alert

Figure 2: CVE-2020-24613, a security vulnerability affecting WolfSSL: a vulnerable client will accept
a TLS connection with a server even if it does not send the Certificate Verify message, which
authenticates the server. This authentication bypass can be automatically found using state machine
inference. Each edge is labeled by Sent/Received, the messages sent to (resp. received by) the SUT
by our tool to.

Another idea would be to link the SUT with a fake library overloading network functions such as
socket, recv and send, to better control the actual interactions with the communication channel. This
approach has already been described in the fuzzing community [2].

Insider Insight for the State Machine States
Beyond merely inferring the state machine, instrumenting the SUT could allow us to characterize the
states of the generated automaton, e.g. by identifying the invariants in the program variables specific
to a given state.

Automatically extracting the state machine and the corresponding internal state of the underlying
code would be very useful to understand what each state of the state machine corresponds to. This
would give interesting insights to the developers trying to study a bug or a security flaw affecting their
network stacks. Indeed, identifying a bug using L⋆ is just the start of the process leading to a verifiable
fix.

The challenges to design and implement such an idea include multi-threading, randomization and
other non-deterministic aspects of the implementation, as well as a possible combinatory explosion to
pin-point the relevant variables to monitor.

Stateful Fuzzing
An extension of our work would be to reuse our knowledge of the actual state machine of an implemen-
tation to improve code coverage during fuzzing sessions. Indeed, it is usually hard for fuzzers to reach
the portions of the code which correspond to the execution of late steps in complex protocols.

Using our knowledge of the actual state machine, we should be able to fuzz the SUT in an arbitrary
state, by first sending a message sequence to reach the expected state, and then inject the actual samples
to test from this state. The idea resembles a recently developed approach called Dolev-Yao Fuzzing [1].

In addition to the previous idea, we could further improve the fuzzing process by reusing the in-
strumentation idea described earlier (the fake library handling network communications) and taking
snapshots of the SUT in different states.

2

Mapper Automatic Derivation
Developing a new mapper for each protocol we want to study can be a tedious task. To make this part of
our methodology more efficient, we could write and use tools to automate (part of) the implementation
of the mapper.

Several projects have been exploring the parser generation part of the process [3], which allow to
alleviate the developper from most of the repetitive boilerplate tasks.

Moreover, the SSH mapper developped during the project follows a modular and flexible design,
which could probably be abstracted and enriched with derivation tools, to propose a Domain-Specific
Language to generate (part of) the mapper state machine.

Practical Informations
The postdoc will be located either on the Évry or the Palaiseau campus of Télécom SudParis. It is a
12-month position.

The applicant must have a PhD thesis in cybersecurity or in a technical field relevant to the subject
(network, systems).

Applications must contain a resume, a motivation letter, and a recommendation letter. They must
be sent to olivier.levillain@telecom-sudparis.eu. If you have any questions, you can address
them to the same address.

References
[1] Max Ammann, Lucca Hirschi, and Steve Kremer. Dy fuzzing: Formal dolev-yao models meet

cryptographic protocol fuzz testing. Cryptology ePrint Archive, Paper 2023/057, 2023. https:
//eprint.iacr.org/2023/057.

[2] Seyed Behnam Andarzian, Cristian Daniele, and Erik Poll. Green-Fuzz: Efficient Fuzzing for Net-
work Protocol Implementations. In 16th International Symposium on Foundations & Practice of
Security (FPS), Bordeaux, France, December 2023.

[3] Olivier Levillain, Sébastien Naud, and Aina Toky Rasoamanana. Work-in-Progress: Towards a
Platform to Compare Binary Parser Generators. In 35. IEEE Security and Privacy Workshops,
SPW (LangSec) 2021, San Jose, CA, USA, May 2021.

[4] Aina Toky Rasoamanana. Derivation and Analysis of Cryptographic Protocol Implementation. PhD
thesis, École doctorale de l’Institut Polytechnique de Paris, June 2023.

[5] Aina Toky Rasoamanana, Olivier Levillain, and Hervé Debar. Towards a Systematic and Automatic
Use of State Machine Inference to Uncover Security Flaws and Fingerprint TLS Stacks. In 27th
European Symposium on Research in Computer Security, ESORICS 2022, Copenhagen, Denmark,
pages 637–657, September 2022.

3

